A new method to predict the consensus secondary structure of a set of unaligned RNA sequences
نویسندگان
چکیده
MOTIVATION To predict the consensus secondary structure, possibly including pseudoknots, of a set of RNA unaligned sequences. RESULTS We have designed a method based on a new representation of any RNA secondary structure as a set of structural relationships between the helices of the structure. We refer to this representation as a structural pattern. In a first step, we use thermodynamic parameters to select, for each sequence, the best secondary structures according to energy minimization and we represent each of them using its corresponding structural pattern. In a second step, we search for the repeated structural patterns, i.e. the largest structural patterns that occur in at least one sequence, i.e. included in at least one of the structural patterns associated to each sequence. Thanks to an efficient encoding of structural patterns, this search comes down to identifying the largest repeated word suffixes in a dictionary. In a third step, we compute the plausibility of each repeated structural pattern by checking if it occurs more frequently in the studied sequences than in random RNA sequences. We then suppose that the consensus secondary structure corresponds to the repeated structural pattern that displays the highest plausibility. We present several experiments concerning tRNA, fragments of 16S rRNA and 10Sa RNA (including pseudoknots); in each of them, we found the putative consensus secondary structure.
منابع مشابه
Consensus Folding of Unaligned RNA Sequences Revisited
As one of the earliest problems in computational biology, RNA secondary structure prediction (sometimes referred to as "RNA folding") problem has attracted attention again, thanks to the recent discoveries of many novel non-coding RNA molecules. The two common approaches to this problem are de novo prediction of RNA secondary structure based on energy minimization and the consensus folding appr...
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملRNA sequence analysis using covariance models.
We describe a general approach to several RNA sequence analysis problems using probabilistic models that flexibly describe the secondary structure and primary sequence consensus of an RNA sequence family. We call these models 'covariance models'. A covariance model of tRNA sequences is an extremely sensitive and discriminative tool for searching for additional tRNAs and tRNA-related sequences i...
متن کاملRNA Sampler: a new sampling based algorithm for common RNA secondary structure prediction and structural alignment
MOTIVATION Non-coding RNA genes and RNA structural regulatory motifs play important roles in gene regulation and other cellular functions. They are often characterized by specific secondary structures that are critical to their functions and are often conserved in phylogenetically or functionally related sequences. Predicting common RNA secondary structures in multiple unaligned sequences remai...
متن کاملRunning title: Covariance models of RNA RNA Sequence Analysis Using Covariance Models
We describe a general approach to several RNA sequence analysis problems using probabilistic models that exibly describe the secondary structure and primary sequence consensus of an RNA sequence family. We call these models \covariance models". A covariance model of tRNA sequences is an extremely sensitive and discriminative tool for searching for additional tRNAs and tRNA-related sequences in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 15 10 شماره
صفحات -
تاریخ انتشار 1999